目录
更新日期:2025年3月7日
姓 名 马自龙 性 别
出生年月 1988年3月 籍贯 湖南石门县
民 族 汉族 政治面貌 群众
最后学历 博士研究生毕业 最后学位 工学博士
技术职称 副教授 导师类别 硕导
行政职务 Email mazilong@scut.edu.cn
工作单位 电子与信息学院 邮政编码 510641
通讯地址 华南理工大学
单位电话
个人简介
马自龙,男,博士,副教授,硕士生导师。长期致力于天线理论与技术方面的研究工作,涉及微波、毫米波、太赫兹频段。现已发表论文近40篇,申请国家发明专利近30项,主持国家级、省部级、企业横向等项目近10项。美国电气电子工程师学会(IEEE)会员,中国通信学会高级会员,中国电子学会高级会员。本领域多家权威期刊审稿人,《IEEE TAP》年度优秀审稿人。
工作经历
2018/07-至今,华南理工大学,电子与信息学院,副教授
2015/11-2018/05,香港城市大学,太赫兹及毫米波国家重点实验室,博士后研究员
教育经历
2012/01-2015/09,香港大学,电机电子工程系,博士
2010/09-2011/09,香港大学,电机电子工程系,硕士
2006/09-2010/07,华南理工大学,电子科学与技术,学士
研究领域
微波/毫米波/太赫兹天线与阵列,透射阵与反射阵天线,周期性结构,超材料,漏波天线,3D打印天线
科研项目
1. 中央高校基本科研业务费-重点项目,时间:2024.01-2025.12,主持
2. 广东省自然科学基金-青年提升项目,时间:2024.01-2026.12,主持
3. 广东省自然科学基金-面上项目,时间:2022.01-2024.12,主持
4. 广州市科技计划项目,时间:2021.04-2023.03,主持
5. 广东省级促进经济发展专项资金项目,时间:2020.01-2021.12,参与
6. 华为横向项目,时间:2020.01-2020.12,主持
7. 国家自然科学基金-青年基金项目,2020.01-2022.12,主持
8. 中央高校基本科研业务费-面上项目,2019.01-2020.12,主持
9. 校级“双一流”建设项目,时间:2019.01-2021.12,主持
发表论文
期刊论文:
[1]. Z. L. Ma, Y. Tang, Q. Xue, W. Che, and K. X. Wang, “Dual-band shared-aperture antenna hybridizing patch and transmitarray with large frequency ratio and wideband characteristics,” IEEE Transactions on Antennas and Propagation, Early Access.
[2]. Z. L. Ma, Y. L. Geng, Z. H. Zhou, “A microwave/millimeter-wave triple-band shared-aperture antenna integrating differentially-fed patch and transmitarray,” AEU-International Journal of Electronics and Communications, vol. 187, 155563, 2024.
[3]. Z. L. Ma, C. W. Zhang, “An additively manufactured dual circularly polarized open‐ended waveguide antenna using outer ridges with wideband characteristic,” Microwave and Optical Technology Letters, vol. 66, e70005, 2024.
[4]. Z. L. Ma, X. F. Xiao, Q. X. Chu and Q. Xue, “A circularly polarized dielectric discrete lens antenna with wide axial ratio and gain bandwidths,” IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 9, pp. 2070-2074, May 2023.
[5]. Z. L. Ma and C. W. Zhang, “3-D printed circularly polarized open-ended waveguide antenna array based on an in-built antipodal exponential groove polarizer,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 2023, id 4824224, Apr. 2023.
[6]. Z. L. Ma, C. W. Zhang, Y. M. Pan and Q. Xue, “A bifilar helices based bidirectional same-sense circularly polarized antenna with wide bandwidth and high gain,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 7, pp. 6162-6167, Apr. 2023.
[7]. Z. L. Ma and X. F. Xiao, “Additively manufactured dual circularly polarized antennas with bidirectional same-sense radiation and wide bandwidth characteristic,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 1029-1034, Oct. 2022.
[8]. Z. L. Ma, S. C. Peng, and Q.-X. Chu, “Additively manufactured circularly polarized open-ended waveguide antenna array based on a linearly tapered double-ridge polarizer,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 32, no. 10, p. e23296, Oct. 2022.
[9]. Z. L. Ma, S. C. Peng, and Q.-X. Chu, “3-D printed circularly polarized multibeam antenna array with full azimuth scanning capability and wideband characteristic for 5G millimeter-wave applications,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 32, no. 9, p. e23271, 2022.
[10]. Z. L. Ma, S. C. Peng, and Q.-X. Chu, “A triple-band composite base station and satellite antenna array for maritime application,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 32, no. 6, p. e23140, Jun. 2022.
[11]. Z. L. Ma, S. C. Peng, Q.-X. Chu, and Q. Xue, “3-D Printed Annular Linear-to-Circular Dielectric Polarizer and Its Applications to Omnidirectional and Multibeam Antennas,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9365–9375, Oct. 2022.
[12]. Z. L. Ma, X. Huang, Q.-X. Chu, and Q. Xue, “An injection molded circularly polarized endfire multibeam antenna with wide axial ratio beamwidth coverage using rhombic waveguide element,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 32, no. 5, p. e23084, 2022.
[13]. Z. L. Ma, C. H. Chan, and B.-J. Chen, “A 3-D Printed Waveguide-Based Linearly Polarized Magnetoelectric Dipole Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 1, pp. 68–72, Jan. 2021.
[14]. Z. L. Ma, C. H. Chan, “Waveguide-Based Differentially Fed Dual-Polarized Magnetoelectric Dipole Antennas,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 3849–3857, Aug. 2017.
[15]. Z. L. Ma, C. H. Chan, K. B. Ng, and L. J. Jiang, “A Collimated Surface-Wave-Excited High-Impedance Surface Leaky-Wave Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2082–2085, 2017.
[16]. Z. L. Ma, C. H. Chan, “A Novel Surface-Wave-Based High-Impedance Surface Multibeam Antenna With Full Azimuth Coverage,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1579–1588, Apr. 2017.
[17]. Z. L. Ma, K. B. Ng, C. H. Chan, and L. J. Jiang, “A Novel Supercell-Based Dielectric Grating Dual-Beam Leaky-Wave Antenna for 60-GHz Applications,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5521–5526, Dec. 2016.
[18]. Z. L. Ma, “Inductively Loaded Segmented Loop Antenna by Using Multiple Radiators,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 109–112, 2017.
[19]. Z. L. Ma, L. J. Jiang, S. Gupta, and W. E. I. Sha, “Dispersion Characteristics Analysis of One Dimensional Multiple Periodic Structures and Their Applications to Antennas,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 113–121, Jan. 2015.
[20]. Z. L. Ma and L. J. Jiang, “One-Dimensional Triple Periodic Dual-Beam Microstrip Leaky-Wave Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 390–393, 2015.
[21]. Z. L. Ma, L. J. Jiang, J. Xi, and T. T. Ye, “A Single-Layer Compact HF-UHF Dual-Band RFID Tag Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1257–1260, 2012.

会议论文:
[1]. Y. Tang and Z. L. Ma, “A high-gain tri-band shared-aperture antenna for microwave and millimeter-wave applications,” in 2024 IEEE 12th Asia-Pacific Conference on Antennas and Propagation (APCAP), Sep. 2024.
[2]. X. Huang and Z. L. Ma, “A wideband circularly polarized folded transmitarray antenna,” in 2023 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Jul. 2023.
[3]. K. Yang and Z. L. Ma, “Wideband differentially fed circularly polarized antenna array based on higher order mode substrate integrated waveguide,” in 2023 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Jul. 2023.
[4] C. W. Zhang and Z. L. Ma, “3-D Printed Circularly Polarized Antenna Array With Stepped Parallel Groove Polarizer,” in 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Dec. 2021, vol. Volume1, pp. 1–2.
[5] C. W. Zhang and Z. L. Ma, “A 3-D Printed Circularly Polarized Open-ended Waveguide Antenna,” in 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Oct. 2021, pp. 246–247
[6] X. Feng Xiao and Z. Long Ma, “3-D Printed Wideband Bidirectional Same Sense Circularly Polarized Antenna,” in 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2021, pp. 1–2.
[7] C. W. Zhang and Z. Long Ma, “A 3-D Printed Wideband Waveguide Based Circularly Polarized Antenna,” in 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2021, pp. 1–2.
[8] S. C. Peng and Z. L. Ma, “A 3-D Printed Circularly Polarized Multi-beam Antenna with Full Azimuthal Coverage,” in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Dec. 2020, pp. 315–316.
[9] S. C. Peng and Z. L. Ma, “A 3-D Printed Circularly Polarized Antenna,” in 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Jul. 2020, pp. 1–2.
[10] Z. L. Ma, C. H. Chan, K. B. Ng, and L. J. Jiang, “A high impedance surface based leaky-wave antenna excited by collimated surface-wave,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Jul. 2017, pp. 289–290.
[11] Z. L. Ma, C. H. Chan, K. B. Ng, and L. J. Jiang, “A supercell based dual beam dielectric grating antenna for 60 GHz application,” in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Jul. 2015, pp. 643–644.
[12] M. L. Chen, S. Gupta, Z. L. Ma, and L. J. Jiang, “Linearly polarized near field focused slot-array waveguide,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2014, pp. 1047–1048.
[13] Z. L. Ma, L. J. Jiang, J. Xi, and T. T. Ye, “A compact HF/UHF dual band RFID tag antenna,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2013, pp. 1122–1123.
[14] Z. L. Ma, L. J. Jiang, S. Gupta, and W. E. I. Sha, “One dimensional multiple periodic composite right/left handed (CRLH) structures,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2013, pp. 636–637.
科研创新
[1] 马自龙,汤毅,“一种贴片和透射阵结构复用的微波/毫米波双频宽带天线,”发明专利,申请号:CN 202311026061.0,申请日:2023年8月15日。
[2] 马自龙,汤毅,“贴片/透射阵结构复用的微波/毫米波双频圆极化天线,”发明专利,申请号:CN202311320794.5,申请日:2023年10月12日。
[3] 马自龙,肖新风,“一种覆盖全Ka波段的宽带圆极化集成馈源透射阵天线,” 发明专利,申请号:CN202211140957.7,申请日:2022年9月19日。
[4] 马自龙,蒋婉玉,“一种偶极子/透射阵复用的微波/毫米波双频双极化天线,”发明专利,申请号:CN202311419923.6,申请日:2023年10月30日。
[5] 马自龙,耿杨力,周芝含,“一种微波毫米波三频共口径天线,”发明专利,申请号:CN202410829488.2,申请日:2024年6月25日。
[6] 马自龙,耿杨力,周芝含,“一种单极子阵与透射阵结合的微波毫米波三频共口径天线,”发明专利,申请号:CN202410916176.5,申请日:2024年7月9日。
[7] 马自龙,耿杨力,张世杰,“一种双频宽带圆极化天线,”发明专利,申请号:CN202411727779.7,申请日:2024年11月28日。
[8] 马自龙,周栩斌,耿杨力,“一种宽角度扫描透射阵天线,”发明专利,申请号:CN202510051097.7,申请日:2025年1月13日。
[9] 马自龙,耿杨力,“一种基于简并模波导的圆极化集成馈源透射阵天线,”发明专利,申请号:202310077634.6,申请日:2023年1月18日.
[10] 马自龙,张楚唯,“一种基于3D打印技术的圆极化开口波导天线阵列,”发明专利,授权号:ZL202111228069.6,授权日:2023年2月10日.
[11] 马自龙,黄璇,“一种宽带圆极化平面集成馈源透射阵天线,”发明专利,授权号:ZL202311314058.9,授权日:2024年2月2日。
[12] 马自龙,肖新风,“一种基于3D打印技术的双向辐射同旋向双圆极化天线,”发明专利,授权号:ZL202011640585.5,授权日:2022年3月25日.
[13] 马自龙,张楚唯,“一种基于3D打印技术的磁电偶极子天线阵列,”发明专利,授权号:ZL202011640372.2,授权日:2022年3月29日.
[14] 马自龙,张楚唯,“基于3D打印技术的宽带开口波导结构双圆极化天线,”发明专利,授权号:ZL202011640373.7,授权日:2022年3月29日.
[15] 马自龙,肖新风,“基于介质极化器的极化可重构双向同旋向圆极化天线,”发明专利,授权号:ZL202011535402.3,授权日:2022年3月29日.
[16] 马自龙,彭少聪,“基于3D打印技术的双脊开口波导结构圆极化天线阵列,”发明专利,授权号:ZL202011530595.3,授权日:2022年3月29日.
[17] 马自龙,彭少聪,“一种全向覆盖的宽带圆极化多波束天线阵列,”发明专利,授权号:ZL202210094942.5,授权日:2022年5月24日.
[18] 马自龙,肖新风,“一种基于介质结构的宽带圆极化透射阵天线,”发明专利,授权号:ZL202210119528.5,授权日:2022年6月10日.
[19] 马自龙,肖新风,“一种覆盖全Ka波段的宽带圆极化集成馈源透射阵天线,”发明专利,申请号:202211140957.7,申请日:2022年9月19日.
[20] 马自龙,张楚唯,“基于3D打印技术的宽带双向辐射同旋向圆极化螺旋天线,”发明专利,授权号:ZL202211171345.4,授权日:2023年3月24日.
[21] 马自龙,杨开,“一种基于基片集成波导高次模式的差分天线阵列,”发明专利,申请号:202211282583.2,申请日:2022年10月19日.
[22] 马自龙,张楚唯,“一种基于3D打印技术的波导结构线极化互补源天线,”实用新型专利,授权号:ZL202022361701.1,授权日:2021年10月22日.
[23] 马自龙,彭少聪,“一种基于介质极化器的全方位面覆盖圆极化多波束天线,”发明专利,申请号:2021110770887.2,申请日:2021年7月7日.
[24] 马自龙,张楚唯,“一种基于3D打印技术的波导结构线极化互补源天线,”发明专利,申请号:202011134767.5,申请日:2020年10月21日.
教学活动
1. 本科生课程《电磁场与电磁波》,64学时
2. 本科生课程《射频电路》,48学时
指导学生情况
1. 本科生获奖:
2023届本科生耿杨力:校级优秀毕业设计

2. 研究生获奖:
2023届硕士生肖新风:国家奖学金
2023届硕士生肖新风:The 21st IEEE (HK) AP/MTT Postgraduate Conference会议优秀学生论文奖三等奖
2023届硕士生张楚唯:广汽奖学金
2022届硕士生彭少聪:IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications会议优秀学生论文奖入围