更新日期:2025年3月17日
个人简介
王瑞,男,工学博士,副教授,硕导,2017年毕业于华南理工大学化学与化工学院制药工程专业,随后在华南理工大学电力学院“1+4”硕博连读,并于2022年获得高电压与绝缘技术专业博士学位。2022年7月至2024年10月在清华大学电机系进行博士后研究工作。2024年12月入职华南理工大学电力学院。主要在高温聚合物电介质储能电容器、可回收环保电工材料、高导热热界面材料以及智能电介质等领域开展关键基础及应用技术研究。近五年,以第一/通讯作者在Nature Materials、Nature Communications以及Advanced Materials等期刊发表SCI论文40余篇。主持国家自然科学基金青年基金项目、中国博士后科学基金面上项目等,另外承担国家电网公司、南方电网公司等企业研发项目3项。
工作经历
2025至今 华南理工大学 副教授
2022-2024 清华大学 博士后 助理研究员 合作导师:李琦 副教授,国家优青
教育经历
2017-2022 华南理工大学 电力学院 电气工程 工学博士
2013-2017 华南理工大学 化学与化工学院 制药工程 工学学士
社会、学会及学术兼职
IEEE 会员
中国电机工程学会 会员
中国电工技术学会 会员
研究领域
1) 高温介电储能电容器
2) 可回收绿色电工材料
3) 智能电介质
4) 高导热封装/热界面材料
5) 超疏水防冰涂料
科研项目
[1] 国家自然科学基金青年基金项目,基于结构单元模块化设计的高温介电储能聚合物材料研究,2024-2026,主持
[2] 中国博士后科学基金面上项目, 高温介电聚合物的分子结构模块化组装及储能性能研究,2023-2024,主持
[3] 南方电网,重点专项,面向特殊湿热环境的新型复合材料产品开发及工程应用,2020-11 至 2023-12, 378万元, 结题, 参与
发表论文
[1] R. Wang, Y. Zhu, S. Huang, J. Fu, Y. Zhou, M. Li, L. Meng, X. Zhang, J. Liang, Z. Ran, M. Yang, J. Li, X. Dong, J. Hu, J. He, Q. Li, Dielectric polymers with mechanical bonds for high-temperature capacitive energy storage. Nature Materials 2025. https://doi.org/10.1038/s41563-025-02130-z
[2] R. Wang, Y. Zhu, J. Fu, M. Yang, Z. Ran, J. Li, M. Li, J. Hu, J. He, Q. Li, Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nature Communications 2023, 14, 2406
[3] R. Wang, H. Xu, S. Cheng, J. Liang, B. Gou, J. Zhou, J. Fu, C. Xie, J. He, Q. Li, Ultrahigh-energy-density dielectric materials from ferroelectric polymer/glucose all-organic composites with a cross-linking network of hydrogen bonds. Energy Storage Materials 2022, 49, 339-347.
[4] D. Zhang, C. Xie, H. Xu, A. Zhong, J. Zhou, C. Bi, B. Gou, H. Cai, R. Wang*, Self‐Adaptive Dielectrics with Tunable Nonlinear Electrical Conductivity via Virus‐Like Structures Composed of Metal Particles. Advanced Materials 2025, 37, 2411645.
[5] A. Zhong, C. Xie, D. Zhang, B. Gou, J. Zhou, S. Yu, C. Bi, H. Xu, H. Cai, L. Li, R. Wang*, Rational design of glass fiber reinforced epoxy resin with thermal conductivity but electrical insulation through a multi-level network. Composites Communications 2025, 54, 102288.
[6] Z. Ran, M. Yang, R. Wang, J. Li, M. Li, L. Meng, Y. Liu, J. Hu, J. He, Q. Li, Surface-gradient-structured polymer films with restricted thermal expansion for high-temperature capacitive energy storage. Energy Storage Materials 2025, 74, 103952.
[7] D. Zhang, C. Bi, B. Gou, J. Zhou, A. Zhong, B. Lin, H. Cai, C. Xie, H. Xu, R. Wang*, Field-dependent nonlinear electrical response characteristics in polymer dielectrics with sodium alginate scaffold. Advanced Composites and Hybrid Materials 2024, 7, 162.
[8] J. Zhou, C. Xie, H. Xu, B. Gou, A. Zhong, D. Zhang, H. Cai, C. Bi, L. Li, R. Wang*, Self-assembled nest-like BN skeletons enable polymer composites with high thermal management capacity. Composites Science and Technology 2024, 258, 110869.
[9] H. Cai, C. Xie, B. Gou, J. Zhou, A. Zhong, D. Zhang, H. Xu, C. Bi, R. Wang*, Durable superhydrophobic insulating coatings for prevention of wet flashover and icing in power system. Applied Surface Science 2024, 671, 160768.
[10] A. Zhong, C. Xie, B. Gou, J. Zhou, H. Xu, S. Yu, D. Zhang, C. Bi, H. Cai, L. Li, R. Wang*, Recyclable Technology of Thermosetting Resins for High Thermal Conductivity Materials Based on Physical Crushing. Energy & Environmental Materials 2024, 7, e12762.
[11] B. Lin, B. Gou, D. Zhang, Y. Xue, R. Wang*, C. Xie, Simulation analysis on the synergistic effect of vegetation ashes and charged particles on the gap electric field distortion. Journal of Physics D: Applied Physics 2024, 57, 205501.
[12] Z. Ran, R. Wang, J. Fu, M. Yang, M. Li, J. Hu, J. He, Q. Li, Spiral‐structured Dielectric Polymers Exhibiting Ultra‐High Energy Density And Charge‐Discharge Efficiency at High Temperatures. Advanced Materials 2023, 35, 2303849.
[13] H. Cai, R. Wang*, B. Gou, J. Fu, Y. Zhu, H. Yang, J. Zhou, M. Li, A. Zhong, D. Zhang, H. Xu, C. Bi, C. Xie, Significantly improved high-temperature capacitive performance in polymer dielectrics utilizing ultra-small carbon quantum dots with Coulomb-blockade effect. Chemical Engineering Journal 2023, 476, 146672.
[14] Z. Ran, Y. Zhang, Z. Luo, Y. Zhu, M. Wang, R. Wang, J. Fu, Q. Shao, H. Quan, H. Yuan, J. Hu, J. He, Q. Li, Significantly improved high-temperature capacitive performance in polypropylene based on molecular semiconductor grafting. Materials Today Energy 2023, 38, 101429.
[15] J. Zhou, C. Xie, R. Wang, H. Xu, B. Gou, H. Yang, L. Li, Ultrahigh in-plane thermal conductive epoxy composites by cellulose-supported GnPs@PDA skeleton under stress-induced orientation strategy. Diamond and Related Materials 2023, 139, 110340.
[16] M. Li, Y. Zhu, R. Wang, J. Fu, Z. Ran, M. Yang, J. Li, J. Hu, J. He, Q. Li, A Bi‐Gradient Dielectric Polymer/High‐Κ Nanoparticle/Molecular Semiconductor Ternary Composite for High‐Temperature Capacitive Energy Storage. Advanced Science 2023, 10, 2302949.
[17] S. Cheng, M. Yang, J. Fu, R. Wang, J. He, Q. Li, Surface‐coated polymer nanocomposites containing z‐aligned high‐k nanowires as high‐performance dielectrics at elevated temperatures. IET Nanodielectrics 2023, 6, 237-245.
[18] B. Gou, J. Zhou, H. Xu, H. Cai, A. Zhong, D. Zhang, L. Li, R. Wang*, C. Xie, Epoxy polymer using tannic acid as the green crosslinker, exhibiting globally enhanced mechanical, insulating and thermally conductive properties. Reactive and Functional Polymers 2023, 191, 105646.
[19] Y. Zhu, X. Dong, S. Huang, C. Li, R. Wang, M. Yang, S. Wang, M. Li, Z. Liang, J. Li, Y. Zhang, Q. Zhang, H. Yuan, Q. Li, J. He, Prediction of mechanical properties for a grafted polypropylene system via transfer learning with a small database. Applied Physics Letters 2023, 122, 214103.
[20] S. Yu, R. Wang, B. Gou, J. Wang, Y. Zhu, A. Zhong, B. Lin, W. Chen, C. Xie, CCMnet: A cluster-level contrastive cross-domain framework for GIS insulation defects diagnosis. Knowledge-Based Systems 2025, 311, 113081.
[21] J. Li, S. Wang, Y. Zhu, Z. Luo, Y.-R. Zhang, Q. Shao, H. Quan, M. Wang, S. Hu, M. Yang, J. Fu, R. Wang, J. Hu, H. Yuan, J. He, Q. Li, Biaxially Oriented Films of Grafted-Polypropylene with Giant Energy Density and High Efficiency at 125. Journal of Materials Chemistry A 2023, 11, 10659-10668.
[22] B. Gou, C. Xie, H. Xu, R. Wang*, J. Zhou, L. Li, Self-assembly of Diazonium-modified Boron Nitride Nanosheets and Glass Fibre: A Strategy Synergistically Improving Mechanical, Insulating and Thermal Properties of Glass fibre reinforced polymer Composites. Surfaces and Interfaces 2023, 36, 102465.
[23] H. Xu, C. Xie, B. Gou, R. Wang*, J. Zhou, L. Li, Core-double-shell structured BT@TiO2@PDA and oriented BNNSs doped epoxy nanocomposites with field-dependent nonlinear electrical properties and enhancing breakdown strength. Composites Science and Technology 2022, 230, 109777.
[24] H. Yang, J. Zhou, H. Xu, B. Gou, R. Wang*, C. Xie, Achieving ultra-high discharge energy density of dielectric polymer nanocomposites by in situ synthesis. Materials Today Energy 2022, 30, 101165.
[25] R. Wang, B. Gou, J. Fu, H. Xu, S. Cheng, J. Zhou, Y. Zhu, J. He, C. Xie, Q. Li, High-energy-density ferroelectric polymer nanocomposites utilizing the Coulomb-blockade effect. Materials Today Nano 2022, 20, 100260.
[26] J. Fu, M. Yang, R. Wang, S. Cheng, X. Huang, S. Wang, J. Li, M. Li, J. He, Q. Li, Improvement of high temperature energy storage performance in polymer dielectrics by nanofillers with defect spinel structure. Materials Today Energy 2022, 29, 101101.
[27] B. Gou, C. Xie, R. Wang, H. Xu, J. Zhou, L. Li, Core-double-shell CNTs@SO@PDA and Functionalized BNNS as Nano-hybrids for Synergistically Enhancing Mechanical and Breakdown Performances of Epoxy with Sandwich-like Structure. Fibers and Polymers 2022, 23, 2030-2041.
[28] T. Zeng, L. Meng, L. Cheng, R. Wang, Z. Ran, D. Liu, J. Fu, J. He, Q. Zhou, Q. Li, Q. Li, C. Yuan, Scalable Hybrid Films of Polyimide‐Animated Quantum Dots for High‐Temperature Capacitive Energy Storage Utilizing Quantum Confinement Effect. Advanced Functional Materials 2024, 2419278. (early access).
[29] J. Zhou, C. Xie, R. Wang, H. Xu, B. Gou, L. Li, Enhanced In-plane Thermal Conductivity of PP Composites with High Orientation and Rational Layered Distribution of BNNS. Materials Today Communications 2022, 31, 103507.
[30] H. Xu, C. Xie, B. Gou, R. Wang, Y. Li, Y. Du, J. Zhou, L. Li, Synergetic optimization of charge transport and breakdown strength of epoxy nanocomposites: Realizing sandwich topological structure through constructing a SiC@SiO2/EP surface layer and m-BNNS/EP insert layer. Materials Science in Semiconductor Processing 2022, 141, 106430.
[31] B. Gou, H. Xu, J. Zhou, C. Xie, R. Wang*, Polymer‐based nanocomposites with ultra‐high in‐plane thermal conductivity via highly oriented boron nitride nanosheets. Polymer Composites 2022, 43, 2341-2349.
[32] H. Xu, R. Wang, B. Gou, J. Zhou, L. Li, C. Xie, Globally enhanced thermal, mechanical and electrical properties of current-field grading composites with self-assembly semiconducting grains on 3D cellulose aerogel scaffolds. Composites Science and Technology 2022, 218, 109197.
[33] R. Wang, C. Xie, B. Gou, H. Xu, J. Zhou, Significant Thermal Conductivity Enhancement of Polymer Nanocomposites at Low Content via Graphene Aerogel. Materials Letters 2021, 305, 130771.
[34] H. Xu, C. Xie, B. Gou, R. Wang, Y. Li, H. Yang, L. Li, Reappearance of Typical Characteristics of FRP Core Rods in the Decay-Like Fracture Insulator. IEEE Transactions on Dielectrics and Electrical Insulation 2021, 28, 1449-1456.
[35] R. Wang, C. Xie, S. Luo, H. Xu, B. Gou, J. Zhou, H. Yang, Sandwich-Structured Polymer Composites with Core–Shell Structure BaTiO 3 @SiO 2 @PDA Significantly Enhanced Breakdown Strength and Energy Density for a High-Power Capacitor. ACS Applied Energy Materials 2021, 4, 6135–6145.
[36] R. Wang, C. Xie, B. Gou, H. Xu, S. Luo, Y. Du, J. Zhou, H. Yang, Core‐shell structured BaTiO3@SiO2@PDA for high dielectric property nanocomposites with ultrahigh energy density. Journal of Applied Polymer Science 2021, 138, 50943.
[37] B. Gou, C. Xie, H. Xu, Y. Du, R. Wang, L. Li, W. Fan, Cracking mechanism and degradation performances of HTV silicone rubber with interfacial defects under acid and thermal stress. Engineering Failure Analysis 2021, 127, 105468.
[38] R. Wang, C. Xie, B. Gou, H. Xu, S. Luo, J. Zhou, L. Zeng, Preparation and properties of carbon‐based epoxy nanocomposites: Dynamic mechanical, dielectric, and thermal properties. Polymer Composites 2020, 41, 4974-4982.
[39] R. Wang, C. Xie, B. Gou, H. Xu, S. Luo, J. Zhou, L. Zeng, Epoxy nanocomposites with high thermal conductivity and low loss factor: Realize 3D thermal conductivity network at low content through core-shell structure and micro-nano technology. Polymer Testing 2020, 89, 106574.
[40] R. Wang, C. Xie, S. Luo, H. Xu, B. Gou, L. Zeng, Preparation and properties of MWCNTs-BNNSs/epoxy composites with high thermal conductivity and low dielectric loss. Materials Today Communications 2020, 24, 100985.
[41] H. Xu, C. Xie, R. Wang, B. Gou, S. Luo, J. Zhou, Effects of electrical-hydrothermal aging degradation on dielectric and trap properties of high temperature vulcanized silicone rubber materials. RSC Advances 2020, 10, 3805-3816.
指导学生情况
在读博士生9名,在读硕士生8名
我的团队
课题组成员:
博士生2人+本科生1人:高温介电储能电容器方向
博士生2人+硕士生1人:可回收绿色电工材料方向
博士生1人:智能电介质方向
博士生1人+硕士生1人:高导热封装/热界面材料
博士生1人:超疏水防冰涂料
招生方向:
1、功能电介质聚合物
2、智能材料
3、绿色环保材料
招生范围:
电力学院、化学与化工学院、材料学院、物理学院、轻工学院
学生培养理念
兴趣是最好的老师,创新是科研的灵魂。
研究生就业去向
清华大学博士后、南网科研院、国网及南网的供电局、武汉南瑞、华为公司等
联系方式
联系电话:18801237384 wx号:scut_wrui
电子邮箱1:wangruiscut@scut.edu.cn
电子邮箱2:epwrui0119@hotmail.com
办公室地址:五山校区宏生科技楼507