目录
更新日期:2018年9月2日
姓 名 钟竞辉 性 别
出生年月 1982年11月 籍贯 惠州市
民 族 汉族 政治面貌 群众
最后学历 博士研究生毕业 最后学位 工学博士
技术职称 副教授 导师类别 硕导
行政职务 Email jinghuizhong@scut.edu.cn
工作单位 计算机科学与工程学院 邮政编码 510006
通讯地址 华南理工大学大学城校区B3
单位电话 020-39380281
个人主页 https://sites.google.com/site/jinghuizhong/home
个人简介
本人主要专注于进化计算以及数据驱动的自动化建模技术研究。围绕上述研究,在国际知名期刊和会议共发表和录用论文40余篇,包括IEEE TEVC,IEEE SMC, IEEE CIM, JAAMAS等著名期刊和杂志。围绕相关研究,主持国家自然科学基金项目一项,中央高校基本科研业务费重点项目一项,并参与多项国内外科研项目,参与的相关研究获得了教育部自然科学一等奖(排名5),所设计的算法获得了国际会议CEC2017进化多任务优化竞赛单目标组冠军和多目标组冠军。
工作经历
2016/7 – 至今, 华南理工大学,副教授
2013/3 – 2016/6, 南洋理工大学,博士后研究员(Research Fellow)
2013/1 – 2013/2, 南洋理工大学,研究助理(Research Associate)
教育经历
2009/9 – 2012/12, 计算机科学系,中山大学,博士
2005/9 – 2007/6, 计算机科学系,中山大学,硕士
2001/9 – 2005/6, 计算机科学系,中山大学,学士
社会、学会及学术兼职
Program chair:  ECIA2018
Session Chair: CEC2018, ICONIP2018
PC member of the following conferences:
ICONIP2018, ICCS2018, ICDIS2018,CST2017,ICONIP2017,ICCS2017,ICCS2016,ICONIP 2016,WCSN2016,ICCS2015,CCDM2011
Reviewer of the following Journals:
IEEE Transactions on Evolutionary Computation
IEEE Transactions on Cybernetics
IEEE Computational Intelligence Magazine  
IEEE Transactions on Neural Networks and Learning Systems
IEEE Transactions on Network and Service Management
ACM Transactions on Modeling and Computer Simulation
IEEE Access
Journal of Applied Soft Computing
Journal of Computational Science
Future Generation Computer Systems
Networks and Spatial Economics
Neural Computing and Applications
Neural Processing Letters
Engineering Optimization
研究领域
计算智能(Computational Intelligence):遗传编程算法、差分进化算法以及计算智能在无线传感器网络、模型参数校准和知识发现等领域的应用
机器学习(Machine Learning):高斯过程、支持向量机、EM 算法等
基于Agent 的建模与仿真(Agent-Based Modeling and Simulation):公共场所人群逃逸仿真与优化、基于机器学习的自动化人群建模与仿真等
科研项目
国家自然科学基金青年基金项目,基于协同遗传程序设计算法的人群行为建模与仿真技术的研究,2017/01-2019/12, 主持
中央高校基金重点项目,分布式遗传编程算法理论及应用, 2017-2019,主持
发表论文
J. Zhong, Y.-S. Ong, and W. Cai, “Self-Learning Gene Expression Programming,” IEEE Transactions on Evolutionary Computation, 2016, 20(1): 65-80.
J. Zhong, L. Feng, and Y.-S. Ong, “Gene Expression Programming: A Survey,” IEEE Computational Intelligence Magazine, vol. 12, no. 3, pp. 54-72, Aug. 2017.
J.Zhong, L. Feng, W. Cai, and Y.-S. Ong, “Multifactorial Genetic Programming for Symbolic Regression Problems,” IEEE Transactions on Systems, Man, And Cybernetics: Systems, In Press 2018.
J. Zhong, M. Shen, J. Zhang, H.S.H. Chung, Y.H. Shi, Y. Li, “A Differential Evolution Algorithm with Dual Populations for Solving Periodic Railway Timetable Scheduling Problem, ” IEEE Transactions on Evolutionary Computation, Vol. 17, No. 4, pp.512-527, August 2013.
J. Zhong, W. Cai, M. Lees, and L. Luo, “Automatic Model Construction for the Behaviour of Human Crowds,” Applied Soft Computing, Volume 56, 2017, Pages 368-378
J. Zhong, W. Cai, L. Luo, and M. Zhao, “Learning behavior patterns from video for agent-based crowd modeling and simulation,” Autonomous Agents and Multi-Agent Systems,2016, 30(5): 990-1019.
J. Zhong, N. Hu, W. Cai, M. Lees, and L.B. Luo, “Density-Based Evolutionary Framework for Crowd Model Calibration, ” Journal of Computational Science, 6 (2015): 11-22.
Y. Xue, J. Zhong*, and et al., “IBED: Combining IBEA and DE for Optimal Feature Selection in Software Product Line Engineering,” Applied Soft Computing, Vol.49, pp.1215-1231, 2016.
J. Zhong and  W. Cai,  “Differential evolution with sensitivity analysis and the Powell's method for crowd model calibration, ” Journal of Computational Science, 9(2015): 26-32.
L. Luo, H. Yin, W. Cai, J. Zhong, M. Lees, “Design and Evaluation of a Data-driven Scenario Generation Framework for Game-based Training,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 9, no. 3, pp. 213-226, Sept. 2017.
M. Zhao, J. Zhong, and W. Cai, “A Role-dependent Data-driven Approach for High Density Crowd Behavior Modeling,” ACM Transactions on Modeling and Computer Simulation, In Press 2018.
L. Feng, L. Zhou, J. Zhong, A. Gupta, Y-S. Ong, K.C. Tan and A. K. Qin, “Evolutionary Multi-tasking via Explicit Autoencoding,” IEEE Transactions on Cybernetics,  In Press 2018