更新日期:2023年12月19日
|
姓 名
|
廖绍伟
|
性 别
|
男
|
出生年月
|
1981年8月
|
籍贯
|
四川成都市
|
民 族
|
汉族
|
政治面貌
|
群众
|
最后学历
|
博士研究生
|
最后学位
|
工学博士
|
技术职称
|
教授
|
导师类别
|
博、硕导
|
行政职务
|
|
Email
|
liaoshaowei@scut.edu.cn
|
工作单位
|
电子与信息学院
|
邮政编码
|
510641
|
通讯地址
|
广州市天河区五山路381号华南理工大学31号楼201房
|
单位电话
|
|
个人主页
|
https://www2.scut.edu.cn/MTT_C/main.psp
|
|
个人简介
廖绍伟,男,教授,博导。IEEE高级会员,广东省杰出青年基金获得者、广东省毫米波与太赫兹重点实验室副主任。曾在加拿大卡尔顿大学,电子科技大学,上海贝尔,香港城市大学任职。2017年加入华南理工大学,现为电子与信息学院教授。近年主要从事相控阵天线和系统的研究。
在IEEE系列期刊发表SCI收录论文80余篇。获2017年IEEE天线与电波传播学会H.A. Wheeler奖(为中国团队首次),2018年R.W.P. King 奖提名,2021年中国电子学会科技进步二等奖。获6项美国/欧洲专利授权,20余项中国发明专利授权。主持国家级项目6项(其中国基面上项目2项),省部级项目3项,华为公司项目3项以及多项其他横向项目。
每年招收硕士研究2名、博士研究生1-2名。
工作经历
2017.12 - 今:华南理工大学,电子与信息学院,先后担任副教授、教授,广东省毫米波与太赫兹重点实验室副主任
2013.09 - 2017.11: 香港城市大学,毫米波国家重点实验室,研究工程师
2012.07-2013.09:阿尔卡特朗讯,上海贝尔,贝尔实验室(中国), 研究科学家
2011.09-2012.07: 香港城市大学,信息与通信技术中心,高级副研究员
2011.01-2011.09: 电子科技大学,电子工程学院,讲师
教育经历
2006.09-2010.12:电子科技大学,电磁场与微波技术,工学博士,指导教师:徐建华教授
期间2007.10 - 2009.09: 卡尔顿大学,研究助理,指导教师:Q.J. Zhang教授(IEEE会士,加拿大工程院院士)
2004.9-2006.9:电子科技大学,物理电子学,硕士,指导教师:徐建华教授
2000.09-2004.06:西南科技大学,电子信息工程,工学学士
获奖、荣誉称号
(1)2020年度广东省自然科学基金杰出青年基金获得者
(2)H.A. Wheeler Applications Prize Paper Award,2017年,IEEE天线与电波传播学会(IEEE天线与电波传播学会三项最高论文奖之一);
(3)入围IEEE天线与电波传播学会2018年R.W.P. King Award候选名单(IEEE天线与电波传播学会三项最高论文奖之一)
(4)中国电子学会,科技进步二等奖,2021年
社会、学会及学术兼职
(1)IEEE高级会员(2016年-)
(2)Microwave and Optical Technology Letters,副编辑(Associate Editor)(2019-2022)
(2)IEEE Transactions on Antennas and Propagation,IEEE Antennas and Wireless Propagation Letters ,IEEE Microwave and Wireless Components Letters等期刊审稿人
研究领域
(1)天线理论与技术(近年主要从事相控阵天线和系统研究)
(2)电磁建模与仿真
(3)射频器件
科研项目
在研项目
1. *****,项目名称:“*****”,300万,项目负责人,研究期限:2023.06-2025.06,
2. 国基自然科学基金面上项目,项目名称:“毫米波伪曲面共形宽角扫描相控阵天线研究”,项目负责人,55万元,研究期限:2023年01月至 2026年 12月,
3. *****,项目名称:“*****”,200万,项目负责人,研究期限:2020.01-2023.12,
4. 广东省自然科学基金杰出青年基金项目,项目名称:“毫米波宽角扫描异构相控阵”, 100万,项目负责人,2021-01至2024-12
结题项目:
1. 国基自然科学基金面上项目,项目名称:“高增益毫米波芯片封装分布式天线技术研究”,项目负责人,60万元,研究期限:2019.1-2022.12,
2. *****,项目名称:“*****”,项目负责人,80万元,研究期限:2018.11-2020.10
3. 国家重点研发计划(原973)课题子任务,项目名称:“高效率高增益的毫米波天线及阵列技术”,100万元,项目负责人,研究期限:2019.7-2023.6
4. 广东省自然科学基金-面上项目,项目名称:“毫米波太赫兹芯片-封装分布式天线技术研究”, 项目负责人,10万,研究期限:2019.10-2022-09
5. 中央高校基本业务费,项目名称:“毫米波芯片封装分布式天线关键技术研究”,10万元,项目负责人,研究期限:2018.9-2020.8
6. *****,项目名称:“*****”,项目负责人,50万元,研究期限:2019.06-2020.05
7. *****,项目名称:“*****”, 项目负责人,56万元,研究期限:2019.06-2020.05
8. *****,项目名称:“*****”, 项目负责人,70万元,研究期限:2022.05-2023.05
发表论文
近三年部分论文:
[1] J. Zhu, Y. Yang, S. Liao, and Q. Xue, “Additively Manufactured Metal-Only Waveguide-Based Millimeter-Wave Broadband Achromatic Reflectarrays,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 7, pp. 6185-6190, 2023.
[2] J. Zhu, Y. Yang, Z. Hou, S. Liao, and Q. Xue, “Aperture-Shared All-Metal Endfire High-Gain Parabolic Antenna for Millimeter-Wave Multibeam and Sub-6-GHz Communication Applications,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 3, pp. 2784-2789, 2023.
[3] S. Xu, K. Wu, Q. Zhou, S. Liao, and Q. Xue, “Low-Profile Conical Beam Array Antenna Based on Concentric Annular Planar Inverted-F Antenna Elements,” IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 7, pp. 1562-1566, 2023.
[4] J. Xiao, S. Liao, Q. Xue, and W. Che, “Millimeter-Wave 1-D Wide-Angle Scanning Pseudo-Curved Surface Conformal Phased Array Antennas Based on Elongated Planar Aperture Element,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 4, pp. 3731-3735, 2023.
[5] J. Wei, S. Liao, Q. Xue, and W. Che, “A Lightweight Low-Profile GNSS Antenna Based on Wideband Multipath Mitigation Strategy,” IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 9, pp. 2150-2154, 2023.
[6] X. Ren, D. Liao, S. Liao, Q. Xue, K. Xue, and W. He, “A 3-D-printed Wideband Millimeter-Wave Fan-Beam Antenna With Flat-Top, Sharp Cutoff Patterns, and Beam-Scanning Capability,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 3, pp. 2476-2486, 2023.
[7] Y. Li, S. Liao, Q. Xue, and W. Che, “Mode-Insensitive Wired Communication Method Based on MIMO Using Multimode Transmission Lines,” IEEE Communications Letters, vol. 27, no. 8, pp. 2029-2033, 2023.
[8] G. Jin, Y. Sun, S. Liao, and Q. Xue, “Millimeter-Wave Wide-Angle Scanning Phased Array Antenna Based on Heterogeneous Beam Elements,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 6, pp. 5463-5468, 2023.
[9] W. Jiang, S. Liao, W. Che, and Q. Xue, “Millimeter-Wave Wideband ±45° Dual-Polarized Phased Array Antenna Based on Compact Wideband Widebeam Dipole Element Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 8, pp. 1813-1817, 2023.
[10] H. Jiang, S. Liao, and Q. Xue, “Hybrid Capacitive and Inductive Coupling Paths for Implementing Quasi-Elliptical High-Order Bandpass FSS With High Out-of-Band Suppression,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 4, pp. 3294-3303, 2023.
[11] H. Jiang, S. Liao, J. Shen, and Q. Xue, “Receiving and Transmitting Antenna Pairs Based Rasorber With High Angular Stability,” IEEE Transactions on Microwave Theory and Techniques, vol. 71, no. 8, pp. 3235-3247, 2023.
[12] H. Jiang, S. Liao, R. Li, and Q. Xue, “Independently Switchable Rasorber With Wide Transmission and Low-Reflection Bands Under Dual Polarization,” IEEE Transactions on Microwave Theory and Techniques, pp. 1-15, 2023.
[13] J. Cheng, S. Liao, W. Feng, W. Che, and Q. Xue, “Millimeter-Wave Wideband Wide-Angle Scanning Proactive Conformal Phased Array Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 3, pp. 660-664, 2023.
[14] J. Zhu, Y. Yang, S. Liao, and Q. Xue, “Dual-Band Antenna Hybridizing Folded Transmitarray and Folded Reflectarray,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 3070-3075, 2022.
[15] J. Zhu, Y. Yang, S. Liao, S. Li, and Q. Xue, “Dual-Band Aperture-Shared Fabry–Perot Cavity-Integrated Patch Antenna for Millimeter-Wave/Sub-6 GHz Communication Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 5, pp. 868-872, 2022.
[16] J. Zhu, Y. Yang, Z. Hou, S. Liao, and Q. Xue, “Dual-Band Aperture-Shared High Gain Antenna for Millimeter-Wave Multi-Beam and Sub-6 GHz Communication Applications,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 4848-4853, 2022.
[17] J. Zhu, S. Liao, and Q. Xue, “3-D Printed Millimeter-Wave Metal-Only Dual-Band Circularly Polarized Reflectarray,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9357-9364, 2022.
[18] J. Zhu, S. Liao, S. Li, and Q. Xue, “Additively Manufactured Metal-Only Millimeter-Wave Dual Circularly Polarized Reflectarray Antenna With Independent Control of Polarizations,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9918-9923, 2022.
[19] Z. Zhang, S. Lin, Y. Sun, S. Liao, W. Che, and Q. Xue, “Low-Profile Shared-Structure Dual-Polarized Yagi–Uda Antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 4, pp. 843-847, 2022.
[20] Z. Zhang, S. Liao, Y. Yang, W. Che, and Q. Xue, “Low-Profile and Shared Aperture Dual-Polarized Omnidirectional Antenna by Reusing Structure of Annular Quasi-Dipole Array,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 8590-8595, 2022.
[21] W. H. Zhang, Q. Xue, W. Yang, W. Che, S. Liao, H. Chen, W. Feng, and K. W. Tam, “A Planar Bidirectional Circularly Polarized Antenna Using Orthogonal Magnetic Dipoles Without Extra Phase Shift Line,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 8536-8541, 2022.
[22] W. Yang, Y. Li, Q. Xue, S. Liao, and W. Che, “Miniaturized Broadband Dual-Polarized Dipole Antenna Based on Multiple Resonances and its Array for Base-Station Applications,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 11, pp. 11188-11193, 2022.
[23] J. Wei, S. Liao, Q. Xue, and W. Che, “Highly Integrated Multifunctional Antenna for Global Navigation Satellite System,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 12, pp. 12305-12310, 2022.
[24] F. Jia, Z. Zheng, Q. Wang, P. Liu, S. Liao, W. Che, and Q. Xue, “A New Multi-Band Multi-Array Antenna Configuration With Scattering Suppression for Radiation Pattern Distortion Mitigation of Base Station,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 7, pp. 6006-6011, 2022.
[25] Y. Han, S. Liao, X. Xiu, B. Li, Y. Chang, Q. Xue, and W. Che, “Bandstop Frequency Selective Surfaces Based on Aramid Paper Honeycomb Structure,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 8164-8172, 2022.
[26] L. Gu, W. Yang, S. Liao, Q. Xue, and W. Che, “Novel Coupling Cancellation Method by Loading Planar Path for Wideband High-Isolation Wide-Scanning Millimeter-Wave Phased Array,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 11, pp. 10520-10530, 2022.
[27] J. Zhu, Y. Yang, D. McGloin, S. Liao, and Q. Xue, “Sub-Terahertz 3-D Printed All-Dielectric Low-Cost Low-Profile Lens-Integrated Polarization Beam Splitter,” IEEE Transactions on Terahertz Science and Technology, vol. 11, no. 4, pp. 433-442, 2021.
[28] J. Zhu, Y. Yang, D. Mcgloin, S. Liao, and Q. Xue, “3-D Printed All-Dielectric Dual-Band Broadband Reflectarray With a Large Frequency Ratio,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 10, pp. 7035-7040, 2021.
[29] J. Zhu, Y. Yang, S. Liao, and Q. Xue, “Aperture-Shared Millimeter-Wave/Sub-6 GHz Dual-Band Antenna Hybridizing Fabry–Pérot Cavity and Fresnel Zone Plate,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8170-8181, 2021.
[30] W. H. Zhang, Q. Xue, S. Liao, W. Yang, W. Che, and H. Chen, “A Linearly Polarized Low-Profile Complementary Antenna With Enhanced Bandwidth and Wide Broadside Beamwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 7, pp. 1332-1336, 2021.
[31] W. H. Zhang, Q. Xue, S. Liao, W. Che, and W. Yang, “Low-Profile Compact Microstrip Magnetic Dipole Antenna With Large Beamwidth and Broad Bandwidth for Vehicular Applications,” IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5445-5456, 2021.
[32] W. H. Zhang, L. Ke, S. Liao, Y. Sun, Q. Xue, W. Yang, W. Che, H. Chen, and M. Hou, “Low-Profile Broadband Vertically Polarized Microstrip Magnetic Dipole Antenna With Endfire Radiation,” IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 10, pp. 2003-2007, 2021.
[33] S. Lin, S. Liao, Y. Yang, W. Che, and Q. Xue, “Gain Enhancement of Low-Profile Omnidirectional Antenna Using Annular Magnetic Dipole Directors,” IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 1, pp. 8-12, 2021.
[34] S. Li, S. Liao, Y. Yang, W. Che, and Q. Xue, “Low-Profile Circularly Polarized Isoflux Beam Antenna Array Based on Annular Aperture Elements for CubeSat Earth Coverage Applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 9, pp. 5489-5502, 2021.
[35] J. Zhu, Y. Yang, D. McGloin, R. R. Unnithan, S. Li, S. Liao, and Q. Xue, “3-D Printed Planar Dielectric Linear-to-Circular Polarization Conversion and Beam-Shaping Lenses Using Coding Polarizer,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4332-4343, 2020.
[36] J. Zhu, Y. Yang, C. Chu, S. Li, S. Liao, and Q. Xue, “Low-Profile Wideband and High-Gain LTCC Patch Antenna Array for 60 GHz Applications,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 4, pp. 3237-3242, 2020.
[37] P. F. Li, S. Liao, Q. Xue, and S. W. Qu, “60 GHz Dual-Polarized High-Gain Planar Aperture Antenna Array Based on LTCC,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 4, pp. 2883-2894, 2020.
[38] F. Jia, S. Liao, and Q. Xue, “A Dual-Band Dual-Polarized Antenna Array Arrangement and Its Application for Base Station Antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 6, pp. 972-976, 2020.
科研创新
近年部分专利:
[1] S. Liao, W. Ni, W. Wang, G. Shen, Omni directional circularly-polarized antenna, 美国专利,授权号 US9876277B2,2018/01/23;
[2] Q. Xue, S. Liao, P. Wu, Differential Planar Aperture Antenna, 美国专利, 授权号 US9583837B2,已授权, 2017/02/28
[3] Q. Xue, S. Liao, Converting a Single-Ended Signal to a Differential Signal, 美国专利, 授权号 US9813042B2, 2017/11/07
[4] Q. Xue, S. Liao, P. Wu, Circularly Polarized Antenna, 美国专利, 授权号US9419347B2,2016/08/16
[5] S. Liao, W. Ni, W. Wang, G. Shen, Omni directional circularly-polarized antenna, 欧洲专利,授权号 EP2965381B1,2016/12/28;
教学活动
本科生课程:《电磁场与电磁波》、《电磁场》
研究生课程:《数值计算方法》
指导学生情况
毕业生生去向
2018级硕士
(1)李思禹,英国肯特大学(University of Kent),攻读博士学位(全额奖学金)
(2)吴凯鑫,华为技术有限公司
(3)冯群倚,维沃移动通信有限公司(vivo)
2019级硕士
(1)肖瑾,南方电网
(2)古奕雪,深圳市坪山区中小学信息教师
2020级硕士
(1)蔡思培,潮州市公务员
(2)陈绍军,普联技术
我的团队
http://www2.scut.edu.cn/MTT_C/main.psp