更新日期:2024年3月18日
个人简介
金海洋,男,1987年7月生,华南理工大学数学学院教授,博士生导师。香港理工大学博士,武汉大学硕士,华中师范大学本科。研究兴趣在生物趋化性、偏微分方程的理论及其应用。近五年先后主持国家级和省部级项目6项,包括国家自然科学基金面上项目2项和广东省自然科学基金杰出青年基金项目一项。2022年获得广东省自然科学奖二等奖一项(1/2).
工作经历
2020.9-至今 华南理工大学数学学院 教授
2017.4-2020.8 华南理工大学数学学院 副教授
2016.9-2017.3 华南理工大学数学学院 博士后副研究员
2014.11-2016.10 华南理工大学数学学院 II类博士后
教育经历
2011.8-2014.10 香港理工大学应用数学系 博士研究生
2009.9- 2011.7 武汉大学数学与统计学学院 硕士研究生
2005.9-2009.8 华中师范大学数学与统计学学院 本科
获奖、荣誉称号
2022年度广东省自然科学二等奖,成果名称:生物趋向性运动的数学理论;完成人:金海洋(华南理工大学)、刘锐(华南理工大学)
社会、学会及学术兼职
美国数学会评论员
研究领域
生物数学,偏微分方程及其应用
科研项目
[1] 国家自然科学基金-面上项目(12371203): 2024.1-2027.12,在研,主持
[2] 广东省自然科学基金-杰出青年项目(2022B1515020032): 2022.1-2025.12,在研,主持
[3] 广东省自然科学基金-面上项目(2020A1515010140): 2019.10-2022.10,已结题
[4] 广州市科技计划项目(202002030363): 2020.4-2023.3,已结题
[5] 国家自然科学基金-面上项目(11871226): 2019.1-2022.12,已结题
[6] 国家自然科学基金-青年基金项目(11501218):2016.1-2018.12,已结题
[7] 中国博士后科学基金-面上项目(2015M572302):2015.3-2016.9,已结题
发表论文
[34] H.Y. Jin, Z.A. Wang and L. Wu,Global solvability and stability of an alarm-taxis system. SIAM J. Math. Anal., 55(4):2838-2876, 2023.
[33] H.Y. Jin and F. Zou*, Nonlinear stability of traveling waves to a parabolic-hyperbolic system modeling chemotaxis with periodic perturbations. J. Differential Equations, 352:23-66, 2023.
[32] H.Y. Jin, G. Lu and F. Zou*, Qualitative properties for a three-species food chain model with cross-diffusion and intra-specific competition. Discrete Contin. Dyn. Syst. Ser. B., 28(10):5244-5268, 2023.
[31] H.Y. Jin and K. Xu, Boundedness of a chemotaxis-convection model describing tumor-induced angiogenesis. Acta Math. Sci. Ser. B (Engl. Ed.) 43(1):156-168, 2023.
[30] J. Chu, H.Y. Jin and T. Xiang, Global dynamics in a chemotaxis model describing tumor angiogenesis with/without mitosis in any dimension. Commun. Math. Sci., 21(4):1055-1095, 2023.
[29] J. Chu and H.Y. Jin*, Predator-prey systems with defense switching and density-suppressed dispersal strategy. Math. Biosci. Eng. 19(12):12472-12499, 2022.
[28] H.Y. Jin, Z.A. Wang and L. Wu, Global dynamics of a three-species spatial food chain model. J. Differential Equations, 333:144-183, 2022.
[27] J. Chu, H.Y. Jin* and L. Xiong, Global dynamics of a tumor invasion model with/without logistic source. Z. Angew. Math. Phys. 72:181, 2021.
[26] H.Y. Jin and T. Xiang, Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model. Math. Models Methods Appl. Sci., 31(7):1373-1417, 2021.
[25] H.Y. Jin and Z.A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. Euro. J. Appl. Math., 32:652-682, 2021.
[24] H.Y. Jin and J. Xu, Analysis of the role of convection in a system describing the tumor-induced angiogenesis. Commun. Math. Sci., 19(4):1033-1049,2021.
[23] H.Y. Jin and Z.A. Wang, The Keller-Segel system with logistic growth and signal-dependent motility. Discrete Contin. Dyn. Syst. Ser. B. 26(6):3023-3041, 2021.
[22] H.Y. Jin, S. Shi and Z.A. Wang, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility. J. Differential Equations, 269:6758-6793, 2020.
[21] H.Y. Jin and Z.A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility. Proc. Amer. Math. Soc., 148:4855-4873, 2020.
[20] H.Y. Jin and Z.A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete Contin. Dyn. Syst. Ser. A. 40(6):3509-3527, 2020.
[19] H.Y. Jin, Z. Liu, S. Shi and J. Xu, Boundedness and stabilization in two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity. J. Differential Equations, 267:494-524,2019
[18] H.Y. Jin and T. Xiang, Chemotaxis effect vs logistic damping on boundedness in the 2-D minimal Keller-Segel model. C. R. Math. Acad. Sci. Paris., 356:875-885, 2018
[17] H.Y. Jin, Y.J. Kim and Z.A. Wang, Boundedness, stabilization and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math., 78(3):1632-1657, 2018.
[16] H.Y. Jin and T. Xiang, Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics. Discrete Contin. Dyn. Syst. Ser. B, 2018. DOI:10.3934/dcdsb.2018249.
[15] H.Y. Jin, Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system wtih signal-dependent diffusion. Discrete Contin. Dyn. Syst. Ser. A, 38(7):3595-3616, 2018.
[14] H.Y. Jin, Z. Liu and S. Shi, Global dynamics of a quasilinear chemotaxis model arising from tumor invasion. Nonlinear Anal. Real World Appl., 44:18-39, 2018.
[13] H.Y. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete Contin. Dyn. Syst. Ser. B, 23(8):3071-3085,2018.
[12] H.Y. Jin and Z.A. Wang, A dual-gradient chemotaxis system modeling the spontaneous aggregation of microglia in Alzheimer's disease. Anal. Appl., 16(3): 307-338, 2018.
[11] L.L. Fan and H.Y. Jin*, Global existence and asymptotic behavior to a chemotaxis system with consumption of chemoattractant in higher dimensions. J. Math.Phys., 58(1), 011503, 2017.
[10] H.Y. Jin, Z. Liu and S. Shi, Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinet. Relat. Models, 10(3):855-878, 2017.
[9] H.Y. Jin and Z.A. Wang, Global stability of prey-taxis systems. J. Differential Equations, 262(3):1257-1290, 2017.
[8] H.Y. Jin and Z. Liu,Global dynamics of the Boussinesq-Burgers system with large initial data. Math. Methods Appl. Sci.,39(18):5732-5743, 2016.
[7] H.Y. Jin and T. Xiang, Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity, 29:3579-3596, 2016.
[6] H.Y. Jin and Z.A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differential Equations, 260(1): 162-196,2016.
[5] H.Y. Jin and Z. Liu, Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space. Appl. Math. Lett., 47:13-20,2015.
[4] H.Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system. J. Math. Anal. Appl., 422(2):1463–1478,2015.
[3] H.Y. Jin, Z.A. Wang and L. Xiong, Cauchy problem of the magnetohydrodynamic Burgers system. Commun. Math. Sci., 13(1):127-151, 2015.
[2] H.Y. Jin and Z.A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model. Math. Methods Appl. Sci.,38(3):444-457,2015.
[1] H.Y. Jin, J. Li and Z.A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity. J. Differential Equations, 255(2):193-219, 2013.
指导学生情况
协助指导博士研究生两名:
[1] 史诗杰,2014级博士生,目前在深圳技术大学任副教授
[2] 徐娇,2016级博士生, 目前在华南理工大学任副教授
在读博士2人,在读硕士5人,已毕业硕士四名